
HIDDEN TEXTURE DATA
V1.0 API REFERENCE & FAQ

API REFERENCE

This is a fairly heavy document, so before reading this API Reference I suggest you watch
an overview & short demonstration of this asset here:

Unity: How to hide data in an image (Spore, Pico-8, etc.)

And if you are looking for a more visual API reference, this video has everything you need:

Unity: How to hide data in an image (Asset reference)

Personally I learn best from example. There is a demo scene included with buttons for all the
available methods. I recommend playing around in that scene and taking a look at what
methods each button calls. This will give you a good understanding of how the asset works.

If you have not yet purchased the asset and are reading this reference from the Asset Store
you can try out the demo scene here: http://stijndelaruelle.com/project/hiddentexturedata/

Setup

No special setup is required apart from importing unless you want to build the example
scene as a standalone executable on Windows.

The “StandaloneFileBrowser” asset used in the demo scene requires you to build with the
API Compatibility Level .NET 4.x (and maybe even Mono as the scripting backend)

However I would only recommend this if you want to specifically build the demo. When
building your own game, just remove all the demo files. They are not needed for this asset to
work!

Using the asset

Using the asset can be divided in 2 sections

● Writing hidden data to a texture
● Reading hidden data from a texture

Both sections use the same class: HiddenTextureData, so let’s start there.

https://www.youtube.com/watch?v=h0oKvz75Ujw
https://www.youtube.com/watch?v=7TubbGBvjuE
http://stijndelaruelle.com/project/hiddentexturedata/

Creating an HiddenTextureData object

To write & read hidden data we need to create a HiddenTextureData object. As the
HiddenTextureData class doesn’t derive from MonoBehaviour it has to be created within
another class instead of putting it on an object in your scene.

To create the HiddenTextureData object you can call its constructor:

HiddenTextureData hiddenTextureDataObject = new HiddenTextureData();

Once you have a HiddenTextureData object, you can use it to write & read hidden data from
a texture.

Setting a texture

Before writing or reading data, we need to assign a texture to the HiddenTextureData object.
This Texture2D can come from anywhere f.e.:

● Created in code
● From a RenderTexture
● Loaded from disc (via File.ReadAllBytes)
● Downloaded (via UnityWebRequest)

Assigning a texture can be done with the following method:

hiddenTextureDataObject.SetTexture(texture2D);

There are also 2 utility methods to make the creation in code & loading from disc options a
little easier:

//Create and assign a white texture

hiddenTextureDataObject.CreateWhiteTexture(width, height);

//Load and assign a texture from disk

hiddenTextureDataObject.LoadTexture(imageFilePath);

In the overview video at 5:57 I explain how you can load a texture in the demo scene:
Unity: How to hide data in an image (Spore, Pico-8, etc.)

https://youtu.be/h0oKvz75Ujw?t=357

Writing hidden data

Adding regular data

Once a texture is loaded you can write data to it using a variety of methods.
Each literal type has its own method as listed below.

In the reference video at 0:40 I explain how you can write data in the demo scene:
Unity: How to hide data in an image (Asset reference)

//8 bit

hiddenTextureDataObject.WriteByte(byte); //Write a byte

hiddenTextureDataObject.WriteSignedByte(sbyte); //Write a sbyte

hiddenTextureDataObject.WriteBool(bool); //Write a bool

//8-16 bit (8 bit when ASCII, 16 bit when Unicode)

hiddenTextureDataObject.WriteChar(char); //Write a char

//16 bit

hiddenTextureDataObject.WriteShort(short); //Write a short

hiddenTextureDataObject.WriteUnsignedShort(ushort); //Write a ushort

//32 bit

hiddenTextureDataObject.WriteInt(int); //Write an int

hiddenTextureDataObject.WriteUnsignedInt(uint); //Write an uint

hiddenTextureDataObject.WriteFloat(float); //Write a float

//64 bit

hiddenTextureDataObject.WriteLong(long); //Write a long

hiddenTextureDataObject.WriteUnsignedLong(ulong); //Write an ulong

hiddenTextureDataObject.WriteDouble(double); //Write a double

//128 bit

hiddenTextureDataObject.WriteDecimal(decimal); //Write a decimal

https://youtu.be/7TubbGBvjuE?t=40

Adding arrays

Writing arrays of literals works the exact same way, with 1 small exception for booleans:

As booleans can only be true or false, it’s a waste to spend an entire byte on one of them.
So when writing multiple booleans, they will be packed to only use 1 byte per 8 booleans.

A string is in a sense also an array of characters, so it’s also included here.

When an array is variable in size it is recommended to write its length before writing the
array itself, as reading an array requires its length to be known.

In the reference video at 4:22 I explain how you can add arrays in the demo scene:
Unity: How to hide data in an image (Asset reference)

//8 bit per index

hiddenTextureDataObject.WriteByteArray(byte[]); //Write byte[]

hiddenTextureDataObject.WriteSignedByteArray(sbyte[]); //Write sbyte[]

//Write bool[] (1 byte per 8 booleans)

hiddenTextureDataObject.WriteBoolArray(bool[]);

//8 16 bit per index

hiddenTextureDataObject.WriteCharArray(char[]); //Write char[]

//16 bit per index

hiddenTextureDataObject.WriteShortArray(short[]); //Write

short[]

hiddenTextureDataObject.WriteUnsignedShortArray(ushort[]); //Wr.

ushort[]

//32 bit per index

hiddenTextureDataObject.WriteIntArray(int[]); //Write int[]

hiddenTextureDataObject.WriteUnsignedIntArray(uint[]); //Write uint[]

hiddenTextureDataObject.WriteFloatArray(float[]); //Write float[]

//64 bit per index

hiddenTextureDataObject.WriteLongArray(long[]); //Write long[]

hiddenTextureDataObject.WriteUnsignedLongArray(ulong[]); //Write ulong[]

hiddenTextureDataObject.WriteDoubleArray(double[]); //Write

double[]

//128 bit per index

hiddenTextureDataObject.WriteDecimalArray(decimal[]); //Write decimal[]

https://youtu.be/7TubbGBvjuE?t=262

//Variable bits per index

hiddenTextureDataObject.WriteString(string); //Write string

hiddenTextureDataObject.WriteStringArray(string[]); //Write string[]

Writing to the texture

Once data is added, it can be written to the texture by calling the following method.

hiddenTextureDataObject.WriteDataToTexture();

In the overview video at 6:55 I explain how you can write the data in the demo scene:
Unity: How to hide data in an image (Spore, Pico-8, etc.)

Saving the texture
Once data is written to the texture, one option is to write it to disk so players can share the
image however they want. This can be done with the following method.

hiddenTextureDataObject.SaveTexture(imageFilePath);

In the overview video at 8:48 I explain how you can save the texture in the demo scene:
Unity: How to hide data in an image (Spore, Pico-8, etc.)

Basic write example

Putting everything together in its most basic form, it should look something like this:

//Construct the HiddenTextureData object

HiddenTextureData hiddenTextureDataObject = new HiddenTextureData();

//Set a texture (05:57 in the overview video)

hiddenTextureDataObject.SetTexture(new Texture2D(10, 10));

//Add some data (00:40 in the reference video)

//All value C# types have functions, including array variants (04:22 in

the reference video)

hiddenTextureDataObject.WriteByte(42);

//Write the data to the texture (06:55 in the overview video)

hiddenTextureDataObject.WriteDataToTexture();

//Save the texture to disk (8:48 in the overview video)

hiddenTextureDataObject.SaveTexture("hiddendata_image.png");

https://youtu.be/h0oKvz75Ujw?t=415
https://youtu.be/h0oKvz75Ujw?t=528

Utility methods

There are also a couple of writing utility methods that you most likely won’t need but they are
here just in case.

To clear all the data that is ready to be written use:

hiddenTextureDataObject.ClearWriteHiddenData();

To get the number of bytes that are currently going to be written use:

long byteCount = hiddenTextureDataObject.GetWriteByteCount();

Reading hidden data

Reading hidden data works very similar to writing. After creating a HiddenTextureData object
& assigning a texture we can start reading data from the texture.

The first method that should be called is the following:

hiddenTextureDataObject.ReadDataFromTexture();

Afterwards you can start reading regular data & arrays in a similar fashion as writing them:

In the overview video at 7:18 I explain how you can read the data in the demo scene:
Unity: How to hide data in an image (Spore, Pico-8, etc.)

Reading regular data

//8 bit

byte b = hiddenTextureDataObject.ReadByte(); //Read a byte

sbyte sb = hiddenTextureDataObject.ReadSignedByte(); //Read a sbyte

bool bl = hiddenTextureDataObject.ReadBool(); //Read a bool

//8-16 bit (8 bit when ASCII, 16 bit when Unicode)

char c = hiddenTextureDataObject.ReadChar(); //Read a char

//16 bit

short s = hiddenTextureDataObject.ReadShort(); //Read a short

ushort us = hiddenTextureDataObject.ReadUnsignedShort(); //Read a ushort

https://youtu.be/h0oKvz75Ujw?t=438

//32 bit

int i = hiddenTextureDataObject.ReadInt(); //Read an int

uint ui = hiddenTextureDataObject.ReadUnsignedInt(); //Read an uint

float f = hiddenTextureDataObject.ReadFloat(); //Read a float

//64 bit

long l = hiddenTextureDataObject.ReadLong(); //Read a long

ulong ul = hiddenTextureDataObject.ReadUnsignedLong(); //Read an ulong

double d = hiddenTextureDataObject.ReadDouble(); //Read a double

//128 bit

decimal dec = hiddenTextureDataObject.ReadDecimal(); //Read a

decimal

Reading arrays

When reading an array you always have to pass the length, as otherwise it doesn’t know
when to stop reading. (string is an exception, as a string prepends it’s length automatically)

If the array is variable in size it is recommended to prepend its length when writing. That way
you can read the length before reading the array itself.

//8 bit per index

byte[] byteArr = hiddenTextureDataObject.ReadByteArray();

sbyte[] sbyteArr = hiddenTextureDataObject.ReadSignedByteArray();

//Read bool[] (1 byte per 8 booleans)

bool[] boolArr = hiddenTextureDataObject.ReadBoolArray();

//8 16 bit per index

char[] charArr = hiddenTextureDataObject.ReadCharArray();

//16 bit per index

short[] shortArr = hiddenTextureDataObject.ReadShortArray();

ushort[] ushortArr = hiddenTextureDataObject.ReadUnsignedShortArray();

//32 bit per index

int[] intArr = hiddenTextureDataObject.ReadIntArray();

uint[] uintArr = hiddenTextureDataObject.ReadUnsignedIntArray();

float[] floatArr = hiddenTextureDataObject.ReadFloatArray();

//64 bit per index

long[] longArr = hiddenTextureDataObject.ReadLongArray();

ulong[] ulongArr = hiddenTextureDataObject.ReadUnsignedLongArray();

double[] doubleArr = hiddenTextureDataObject.ReadDoubleArray();

//128 bit per index

decimal[] decimalArr = hiddenTextureDataObject.ReadDecimalArray();

//Variable bits per index

string str = hiddenTextureDataObject.ReadString();

string[] stringArr = hiddenTextureDataObject.ReadStringArray();

Basic read example

Putting everything together in its most basic form, it should look something like this:

//Construct the HiddenTextureData object

HiddenTextureData hiddenTextureDataObject = new HiddenTextureData();

//Load a texture (05:57 in the overview video)

hiddenTextureDataObject.LoadTexture("hiddendata_image.png");

//Read the data from the texture (7:18 in the overview video)

hiddenTextureDataObject.ReadDataFromTexture();

//Read some data (8:28 in the overview video)

//All value C# types have functions, including array variants (04:22 in

the reference video)

byte readByte = hiddenTextureDataObject.ReadByte();

Utility methods

There are also a couple of reading utility methods that you most likely won’t need but they
are here just in case.

If you want to set the byte index where you want to start reading from use:

hiddenTextureDataObject.SetHiddenDataReadPosition(index);

If you want to get the current byte index where you are going to read from use:

long byteIndex = hiddenTextureDataObject.GetHiddenDataReadPosition();

Settings

The setting methods help you tweak where the data is hidden in a couple of different ways.

● Tweaking which bits are used to hide it in
● Tweak what pixels are used to hide it in

Keep in mind that these settings should be the same for both reading and writing!

The hiding bits

The following method allows you to define how many bits per channel you want to use for
hidden data. This can range from 0 to 8 where 0 means no pixels are used to hide data and
8 meaning all bits are used for hiding data. The least significant bits will always be used first.

Keep in mind that the higher this number, the more visible the hidden data becomes.
I recommend starting out by only using 2 alpha channel bits and increasing the amount
evenly across all channels if you need to hide more data. Personally I wouldn't go higher
than 2 bits per channel as any higher will definitely be very visible.

In the reference video at 5:51 I explain this setting:
Unity: How to hide data in an image (Asset reference)

hiddenTextureDataObject.SetDataBitsPerChannel(red, green, blue, alpha);

The data zones

The following methods allow you to define where and in what direction hidden data will be
written to/read from. By default it will use the entire texture, starting in the top left corner and
writing from left to right, top to bottom.

In the overview video at 11:00 I explain this setting:
Unity: How to hide data in an image (Asset reference)

hiddenTextureDataObject.AddDataZone(rect, //Regular C# rectangle

axis, //Horizontal or Vertical

horizontalDirection, //Left or Right

verticalDirection); //Up or Down

https://youtu.be/7TubbGBvjuE?t=351
https://youtu.be/7TubbGBvjuE?t=660

Spiral data zone

Spiral data zones don’t really exist, it’s an utility function that automatically adds many
regular data zones with the correct settings.

In the reference video at 13:31 I explain this setting:
Unity: How to hide data in an image (Asset reference)

hiddenTextureDataObject.AddSpiralDataZone(rect, //Regular C# rectangle

Thickness, //In pixels

startCorner, //TopLeft, …
clockDirection); //Clockwise,

…

Clearing data zones

If you want to clear all the data zones again, you can use this utility method:

hiddenTextureDataObject.ClearDataZones();

The length prefix

By default all the hidden data is prefixed with its length. This speeds up the reading process
by not needing to read every single pixel but only the ones that are used to hide data.

If you are not short on data I would leave this setting on it’s default “Dynamic” type. (which
writes the length in the smallest required type)

However if you really want to control this prefix, or want to have none at all you can tweak
with the following method.

In the reference video at 7:50 I explain this setting:
Unity: How to hide data in an image (Asset reference)

//Prefix type: None, Dynamic, Byte, Ushort, UInt or ULong

hiddenTextureDataObject.SetLengthPrefixType(lengthPrefixType);

https://youtu.be/7TubbGBvjuE?t=811
https://youtu.be/7TubbGBvjuE?t=470

FAQ

How can I verify that an image actually contains data from my game?

There are multiple ways to ensure your game only reads images that were written by it.

Add a couple of bytes or a string in front of all the other data. This way if you don’t read
these very specific bytes, the image was definitely not written by your game.

Add a checksum in front or at the end of all your data, to check with.

If you use one or both of these solutions the chance that a random image will be accepted is
extremely small.

But can’t people figure this out and read all the data?

Yes they can, the point is to hide it. Not to encrypt it. You can of course encrypt your data
and store that in the image if you want to.

If you want to use this feature for user generated content, I wouldn’t throw up any more
barriers than needed. But if you intend to use it for a difficult puzzle or ARG, go ahead! (and
let me know, I love those! :))

Why not use a QR code?

QR codes are very great at being scanned by a camera, and even contain some extra data
to ensure it’s readable when it’s damaged. (compression also keeps them readable)

They are however very limited in the way they look and the data they can contain.
So if your game has camera access, a QR code is something that you can consider.

Otherwise this solution is my personal preference. But it’s up to you!

I can’t build the demo on Windows

The “StandaloneFileBrowser” asset requires you to build with API Compatibility Level .NET
4.x (and maybe even Mono as the scripting backend)

However I would only recommend this if you want to specifically build the demo. When
building your own game, just remove all the demo files. They are not needed for this asset to
work.

My question is not in the FAQ

If you have any other questions, don’t hesitate to ask them on the Unity forum post for this
asset!

CREDITS

This asset is created and maintained by Stijn Delaruelle (https://stijndelaruelle.com)

The StandaloneFileBrowser was created by Gökhan Gökçe & Ricardo Rodrigues
And can be found at this repository: https://github.com/gkngkc/UnityStandaloneFileBrowser

If you enjoy this asset, please consider giving it a rating & leaving a review. Thank you!

https://stijndelaruelle.com
https://github.com/gkngkc/UnityStandaloneFileBrowser

